Nitric Oxide and Nitrous Oxide Production by Soybean and Winged Bean during the in Vivo Nitrate Reductase Assay.
نویسندگان
چکیده
This study was conducted to determine by gas chromatography (GC) and mass spectrometry (MS) the identity and the quantity of volatile N products produced during the helium-purged in vivo NR assay of soybean (Glycine max [L.] Merr. cv Williams) and winged bean (Psophocarpus tetragonolobus [L.] DC. cv Lunita) leaflets. Gaseous material for identification and quantitation was collected by cryogenic trapping of volatile compounds carried in the He-purge gas stream. As opposed to an earlier report, acetaldehyde oxime production was not detected by our GC method, and acetaldehyde oxime was shown to be much more soluble in water than the compound(s) evolved from soybean leaflets. Nitric oxide (NO) and nitrous oxide (N(2)O) were identified by GC and GC/MS as the main N products formed. NO and N(2)O produced from soybean leaflets were both labeled with (15)N when (15)N-nitrate was used in the assay medium, demonstrating that both were produced from nitrate during nitrate reduction. Other compounds co-trapped with NO and N(2)O were identified as air (N(2), O(2)), CO(2), methanol, acetaldehyde, and ethanol. Leaves of winged bean, subjected to the purged in vivo NR assay, evolved greater quantities of NO and N(2)O (13.9 and 0.37 micromole per gram fresh weight per 30 minutes, respectively) than did the soybean cv Williams (1.67 and 0.09 micromole per gram fresh weight per 30 minutes, respectively). In both species NO production was dominant. In contrast, with similar assays, NO and N(2)O were not evolved from leaves of the nr(1) soybean mutant which lacks the constitutive NR enzymes. In addition to soybean cv Williams, six other Glycine sp. examined evolved significant quantities of NO((x)) (NO and NO(2)). Other species including Neonotonia wightii (Arn.) Lackey comb. nov., Pueraria montana (Lour.) Merr., and Pueraria thunbergiana Benth. evolved lower levels of NO((x)).
منابع مشابه
Nitric Oxide Emissions from Soybean Leaves during in Vivo Nitrate Reductase Assays.
Recent work identified acetaldehyde oxime as the predominant product purged by inert gases from anaerobic in vivo nitrate reductase (NR) assays of soybean (Glycine max [L.] Merr.) leaves. Another recent study supported earlier research findings which identified the primary product evolved from soybean leaves as nitric oxide (NO). This paper provides evidence that eliminates acetaldehyde oxime a...
متن کاملThe Conversion of Nitrite to Nitrogen Oxide(s) by the Constitutive NAD(P)H-Nitrate Reductase Enzyme from Soybean.
A two-step purification protocol was used in an attempt to separate the constitutive NAD(P)H-nitrate reductase [NAD(P)H-NR, pH 6.5; EC 1.6.6.2] activity from the nitric oxide and nitrogen dioxide (NO((x))) evolution activity extracted from soybean (Glycine max [L.] Merr.) leaflets. Both of these activities were eluted with NADPH from Blue Sepharose columns loaded with extracts from either wild-...
متن کاملKinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification.
The kinetics of denitrification and the causes of nitrite and nitrous oxide accumulation were examined in resting cell suspensions of three denitrifiers. An Alcaligenes species and a Pseudomonas fluorescens isolate characteristically accumulated nitrite when reducing nitrate; a Flavobacterium isolate did not. Nitrate did not inhibit nitrite reduction in cultures grown with tungstate to prevent ...
متن کاملEvidence for mutagenesis by nitric oxide during nitrate metabolism in Escherichia coli.
In Escherichia coli, nitrosative mutagenesis may occur during nitrate or nitrite respiration. The endogenous nitrosating agent N2O3 (dinitrogen trioxide, nitrous anhydride) may be formed either by the condensation of nitrous acid or by the autooxidation of nitric oxide, both of which are metabolic by-products. The purpose of this study was to determine which of these two agents is more responsi...
متن کاملThe requirement of RpoN (sigma factor sigma54) in denitrification by Pseudomonas stutzeri is indirect and restricted to the reduction of nitrite and nitric oxide.
The rpoN region of Pseudomonas stutzeri was cloned, and an rpoN null mutant was constructed. RpoN was not essential for denitrification in this bacterium but affected the expression levels and enzymatic activities of cytochrome cd1 nitrite reductase and nitric oxide reductase, whereas those of respiratory nitrate reductase and nitrous oxide reductase were comparable to wild-type levels. Since t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 82 3 شماره
صفحات -
تاریخ انتشار 1986